Simple proof of a determinant equation

Luke Poeppel

June 4, 2019

Lemma: $\operatorname{det}(T)=\prod_{k=0}^{n} a_{k k}$ for an upper or lower triangular matrix $T^{n x n}$.
Proof: We use proof by induction. Our base case is $T^{2 x 2}=\left(\begin{array}{cc}a_{11} & a_{12} \\ 0 & a_{22}\end{array}\right)$. Then, $\operatorname{det}\left(T^{2 x 2}\right)=$ $a_{11} a_{22}$. We assume that $\operatorname{det}\left(T^{(n-1) x(n-1)}\right)=\prod_{i}^{r} a_{i i}$ By Laplace expansion along the first column, $\operatorname{det}\left(T^{n x n}\right)=a_{11} \operatorname{det}\left(\begin{array}{cccc}a_{22} & 0 & \ldots & a_{2 n} \\ 0 & a_{33} & \ldots & \ldots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \ldots & \ldots & a_{n n}\end{array}\right)$. The matrix collapses in the same manner during each iteration. Therefore, the proof by induction holds. The proof for a lower triangular matrix follows the same procedure.

Prop: The determinant of an invertible matrix A is equal to the product of its eigenvalues. We write this as $\operatorname{det}(A)=\prod_{i}^{r} \lambda_{i}$ where $r=\operatorname{rank}(A)$ and λ satisfies $A x=\lambda x$ for an eigenvector x.

Proof: Consider the matrix $A=\left[a_{i j}\right] \in \Re^{n x m}$. If A is diagonalizable, we have the eigendecomposition $A=E \Lambda E^{-1}$ where E is a matrix of r linearly independent eigenvectors of A, E^{-1} is its inverse, and Λ is a diagonal matrix holding the eigenvalues of $A . M_{n}(\Re) \xrightarrow{\text { det }} \Re$ is a multiplicative morphism; thus, $\operatorname{det}(A \cdot B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$. We apply this fact to the eigendecomposition of A and find that $\operatorname{det}(A)=\operatorname{det}(E) \cdot \operatorname{det}(\Lambda) \cdot \operatorname{det}\left(E^{-1}\right)$. Since $\operatorname{det}(E)=\frac{1}{\operatorname{det}\left(E^{-1}\right)}$, we find that $\operatorname{det}(A)=\operatorname{det}(\Lambda)$. As a diagonal matrix (considered upper or lower triangular, by definition), $\operatorname{det}(\Lambda)$ is simply the product of elements on the diagonal, as demonstrated by the Lemma. Therefore, $\operatorname{det}(A)=\prod_{i}^{r} \lambda_{i}$. Q.E.D.

