Profinite Groups and Infinite Galois Theory Notes (Independent Study with Dr. Margaret Bilu)

Luke Poeppel
luke.poeppel@gmail.com
Courant Institute of Mathematical Sciences, NYU

2020-06-01

1. Basic Category Theory

We begin with a short introduction to category theory to motivate projective limits.
Definition 1.1. A Category \mathscr{C} consists of a class of objects $\mathrm{Ob}(\mathscr{C})$ along with a class of morphisms $\operatorname{Arr}(\mathscr{C})$ such that for any $A, B \in \operatorname{Ob}(\mathscr{C})$, there exists a subclass $\operatorname{Hom}_{\mathscr{C}}(A, B)$ of morphisms from A to B with a composition law,

$$
\operatorname{Hom}_{\mathscr{C}}(A, B) \times \operatorname{Hom}_{\mathscr{C}}(B, C) \rightarrow \operatorname{Hom}_{\mathscr{C}}(A, C)
$$

that sends $(f, g) \mapsto g \circ f$. For all $A \in \mathrm{Ob}(\mathscr{C})$, there exists an identity morphism, $i d_{A} \in \operatorname{Hom}_{\mathscr{C}}(A, A)$. Finally, composition of maps must be associative, i.e., $h \circ(g \circ f)=(h \circ g) \circ f$.

When $f \in \operatorname{Hom}_{\mathscr{C}}(A, B)$, we write that $f: A \rightarrow B$ in \mathscr{C} and if

$$
A \xrightarrow{f} B \xrightarrow{g} C
$$

then $g \circ f: A \rightarrow C$ for $A, B, C \in \operatorname{Ob}(\mathscr{C})$. Formally, $\operatorname{Hom}_{\mathscr{C}}(A, B)$ is a monoid since there exists an identity element and the operation is associative. There are instances in which either $\mathrm{Ob}(\mathscr{C})$ or $\operatorname{Hom}_{\mathscr{C}}(A, B)$ forms a set rather than a class. In this case, we call \mathscr{C} a small category. An element $f \in \operatorname{Hom}_{\mathscr{C}}(A, B)$ is an isomorphism if there exists a $g \in \operatorname{Hom}_{\mathscr{C}}(B, A)$ such that $g \circ f=\operatorname{id}_{A}$ and $f \circ g=\operatorname{id}_{B}$. First we present several classical categories.
(a) Denote by Set the category of sets where $\mathrm{Ob}($ Set $)$ is the class of all sets and for any $X, Y \in$ $\mathrm{Ob}($ Set $), \operatorname{Hom}_{\mathrm{Set}}(X, Y)$ is the class of all functions between X and Y. Isomorphisms in the category of sets are bijections.
(b) Denote by Grp the category of groups where $\operatorname{Ob}(\mathbf{G r p})$ is the class of all groups and $\operatorname{Hom}_{\mathbf{G r p}}(G, H)$ is the class of all group homomorphisms from G to H. In other words, $\varphi \in \operatorname{Hom}_{\mathbf{G r p}}(G, H) \Longleftrightarrow$ $\varphi(x * y)=\varphi(x) \diamond \varphi(y)$ for all $x, y \in G$.
(c) Denote by Met the category of metric spaces. Then for any $\left(X, d_{1}\right),\left(Y, d_{2}\right) \in \operatorname{Ob}(\operatorname{Met})$, we have that $\operatorname{Hom}_{\text {Met }}\left(\left(X, d_{1}\right),\left(Y, d_{2}\right)\right)$ is the class of all metric functions between the spaces (i.e. Lipschitz function of metric spaces with constant $K=1$.)
(d) Denote by Top the category of topological spaces. Arr(Top) is therefore the class of all continuous maps between topological spaces in $\mathrm{Ob}(\mathbf{T o p})$. In this case, homeomorphisms (i.e. bijective, continuous maps with a continuous inverse) are the isomorphisms of the category.

Definition 1.2. A Subcategory \mathscr{D} of a category \mathscr{C} consists of a subclass of $\mathrm{Ob}(\mathscr{C})$ along with a subclass of $\operatorname{Arr}(\mathscr{C})$ such that the morphisms in \mathscr{D} agree with the morphisms in \mathscr{C}.

A few examples of subcategories include: (i) the category of Abelian groups, $\mathbf{A} \mathbf{b}$, is a subcategory of Grp, (ii) the category of all Hausdorff topological spaces, Haus, is a subcategory of Top.

Definition 1.3. If $A \in \mathrm{Ob}(\mathscr{C})$ for a category \mathscr{C}, we say that A is universally repelling if for every $B \in \mathrm{Ob}(\mathscr{C})$, there is a unique morphism from A to B. Equivalently,

$$
A \text { is universally repelling } \Longleftrightarrow\left|\operatorname{Hom}_{\mathscr{C}}(A, B)\right|=1
$$

We say that A is universally attracting if for every $B \in \mathrm{Ob}(\mathscr{C})$, there is a unique morphism from B to A. Equivalently,

$$
A \text { is universally attracting } \Longleftrightarrow\left|\operatorname{Hom}_{\mathscr{C}}(B, A)\right|=1
$$

Proposition 1.1. In the category Set, the empty set \emptyset is universally repelling.
Proof. We have that \emptyset is universally repelling if for every $B \in \mathrm{Ob}($ Set $)$, there is a unique morphism from $\emptyset \rightarrow B$. But $f: \emptyset \rightarrow B$ is the empty function. The fact that the empty function is unique is vacuously true. Thus, \emptyset is universally repelling in Set.

Proposition 1.2. The trivial group $\{e\}$ is both universally attracting and universally repelling in the category of groups.

Proof. We must show that $\left|\operatorname{Hom}_{\mathbf{G r p}}(\{e\}, H)\right|=\left|\operatorname{Hom}_{\operatorname{Grp}}(G,\{e\})\right|=1$. Note that the only function $\varphi: G \rightarrow\{e\}$ is the 0 -map (or, more generally, the e-map) which sends each element g to the identity of the group. Also, $\phi:\{e\} \rightarrow H$ is simply the canonical inclusion map (which is always unique). Thus, $\{e\}$ is both universally attracting and universally repelling in the category of groups.

Most functions encountered in algebra send objects to others within the same category. Consider, for example, the determinant function det: $\mathrm{GL}_{n}(\mathbb{F}) \rightarrow \mathbb{F}$. The domain is the group of $n \times n$ invertible matrices over a field \mathbb{F} and the codomain is a field. But, trivially, since all fields can be seen as groups (with far more structure), the morphism still exists in the category of groups. However, we are often interested in functions that take us from one category to a distinct category. To accomplish this, we use Functors.

Definition 1.4. A functor is a map between categories that preserves structure. Formally, if \mathscr{C} and \mathscr{D} are categories and $F: \mathscr{C} \rightarrow \mathscr{D}$, then F assign to each object $A \in \mathscr{C}$ an object $F(A) \in \mathscr{D}$ and each arrow $f: A \rightarrow B$ in \mathscr{C} to another arrow, $F f: F(A) \rightarrow F(B)$ such that
(a) $F\left(\mathrm{id}_{A}\right)=\operatorname{id}_{F(A)}$
(b) $F(g \circ f)=F(g) \circ F(f)$

In this case, F is called a covariant functor. If condition (a) is met but we instead have $F(g \circ f)=$ $F(f) \circ F(g)$, then F is called contravariant.

A subcategory \mathscr{D} of \mathscr{C} is endowed with a canonical inclusion functor that takes all elements to their identity in the larger category. Within a category, we have similar definitions for injectivity, surjectivity, and bijectivity.

Definition 1.5. A functor $F: \mathscr{C} \rightarrow \mathscr{D}$ is called faithful if it is injective on morphisms.
Definition 1.6. A functor $F: \mathscr{C} \rightarrow \mathscr{D}$ is called full if it is surjective on morphisms.
Definition 1.7. A functor $F: \mathscr{C} \rightarrow \mathscr{D}$ is called fully faithful if it is bijective on morphisms.
Definition 1.8. An endofunctor is a functor from a category \mathscr{C} to itself.
We now consider several important examples of functors.
(a) Consider the covariant functor $F: \mathbf{G r p} \rightarrow$ Set that faithfully takes every group G to its underlying set $U(G)$. Functors of this type are called forgetful; broadly, they are maps that lose some structure/axioms.
(b) Let $F:$ Set \rightarrow Grp be the functor that sends each set to the free group generated by that set.
(c) Denote by Vect $\mathbb{K}_{\mathbb{K}}$ the category of vector spaces over the field \mathbb{K}. A linear functional on a vector space V is a linear map $V \rightarrow \mathbb{F}$. We denote by $\mathscr{L}(V, \mathbb{F})=V^{*}$ the set of all linear functionals, i.e., the dual of V. Consider the endofunctor $F: \operatorname{Vect}_{\mathbb{K}} \rightarrow$ Vect $_{\mathbb{K}}$ that sends a vector space $V \in \mathrm{Ob}\left(\right.$ Vect $\left._{\mathbb{K}}\right)$ to its dual space V^{*}. What does this functor do to the morphisms? Given a linear transformation $f: V \rightarrow W$, can we get a map $F f: V^{*} \rightarrow W^{*}$? So, $F f$ sends a linear functional $\varphi_{1}: V \rightarrow \mathbb{K}$ to another linear functional $\varphi_{2}: W \rightarrow \mathbb{K}$. But this map can only be made with a pullback (composition). Indeed, we have the following commutative diagram:

Thus, we define $F(f):=f^{*}$ where $f^{*}(\varphi)=\varphi \circ f$. Then,

$$
\varphi_{2}:(W \rightarrow \mathbb{K}) \mapsto \varphi_{2} \circ f:(V \rightarrow \mathbb{K})
$$

which shows that the arrows are reversed; therefore, F is contravariant.
Definition 1.9. A pair of functors $F: A \rightarrow B$ and $G: B \rightarrow A$ is called adjoint if for every pair of objects (a, b) with $a \in A$ and $b \in B$, there is a functorial bijection,

$$
\tau: \operatorname{Hom}_{B}(F(a), b) \rightarrow \operatorname{Hom}_{A}(a, G(b))
$$

Equivalently, there is a bijection such that for all $f: a \rightarrow a^{\prime}$ in A and $g: b \rightarrow b^{\prime}$ in B, the following diagram commutes:

Proposition 1.3. Let $F:$ Set \rightarrow Grp be the functor that sends each set to the free group generated by the set and let $G: \mathbf{G r p} \rightarrow$ Set be the forgetful functor that sends G to its underlying set $U(G)$ (see the above examples). Then F is left adjoint to G and G is right adjoint to F.

Proof. This is beyond the scope of this paper.

2. Direct and Inverse Systems

In constructing direct and inverse limits for the creation of profinite groups, we must first consider direct and inverse systems within a category. Then we may examine the universally repelling/attracting objects of these systems that provides the desired limit. First, we require two simple definitions.

Definition 2.1. A partially ordered set (or poset) is a set along with a relation $\preceq \subseteq A \times A$ such that for every $x, y, z \in A$, the following are satisfied:
(a) Reflexivity: $x \preceq x$
(b) Antisymmetry: $(x \preceq y \wedge y \preceq x) \Longrightarrow x=y$
(c) Transitivity: $(x \preceq y \wedge y \preceq z) \Longrightarrow x \preceq z$

It is important to note that the trichotemy $x \preceq y, y \preceq x$, or $x=y$ does not necessarily hold for all $x, y \in A$ in a partial order. Consider, for example, the poset (\mathbb{N}, \mid) where \mid is the divisibility relation. It is easy to see that the axioms are satisfied, but note that $2 \nmid 3,3 \nmid 2$, and $2 \neq 3$. If, on the other hand, one of the relations does hold for all $x, y \in A$, then the set is totally ordered; one standard example of this is (\mathbb{Z}, \leq).

Definition 2.2. A directed set is a partially ordered set (A, \preceq) such that for all $x, y \in A$, there exists a $z \in A$ such that $x \preceq z$ and $y \preceq z$. Equivalently, a set is directed if there exist pairwise upper bounds for all elements of the set.

Proposition 2.1. Every totally ordered set is directed.
Proof. TODO (result from lattice theory)
We briefly discuss an important example of a directed set that will be discussed in detail later.
Proposition 2.2. Let (X, τ) be a topological space. Suppose $x_{0} \in T$ and let $U_{x_{0}}$ and $V_{x_{0}}$ be neighborhoods around x_{0} (not necessarily open). We can turn all of the neighbourhoods of x_{0} into a directed set by defining $U \preceq V \Longleftrightarrow V \subseteq U$. Intuitively, for any two neighborhoods of x_{0} (one contained in the other), the pairwise upper bound will be a smaller neighborhood.

Proof. We must first show that $((X, \tau), \preceq)$ is a partial order. Suppose U, V, and W, are neighbourhoods around $x_{0} \in X$. By definition of \subseteq, it always holds that $U \subseteq U$, so \preceq is reflexive. If $U \subseteq V$ and $V \subseteq U$, then $U=V$, so antisymmetry holds. Finally, if $U \subseteq V$ and $V \subseteq W$, then $U \subseteq W$, so transitivity of \preceq holds. Now we must show that for any U, V such that $V \subseteq U$, there exists a W such that $U \subseteq W$ and $V \subseteq W$. But this is trivial since we may always choose $\left\{x_{0}\right\}$. Thus, (X, τ) under the \preceq relation is a directed set.

We are now able to define direct systems.
Definition 2.3. Suppose I is a directed set under \preceq and \mathscr{C} is a category. Let $\left\{A_{i}\right\}_{i \in I}$ be a collection of objects in $\mathrm{Ob}(\mathscr{C})$ indexed by I and let $\varphi_{i \preceq j}: A_{i} \rightarrow A_{j}$ be a homomorphism for all $i \preceq j$ such that,
(a) $\varphi_{i \preceq i}=i d_{A_{i}}: A_{i} \rightarrow A_{i}$.
(b) $\varphi_{j \preceq k} \circ \varphi_{i \preceq j}=\varphi_{i \preceq k}$ when $i \preceq j \preceq k$.

Then, $\left\langle A_{i}, \varphi_{i \preceq j}\right\rangle$ is called a direct system in \mathscr{C}. Note that "homomorphism" is meant in the context of the category in which the system exists; in the category of rings, for example, $\varphi_{i \preceq j}$ is understood to be a ring homomorphism.

