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1. Basic Category Theory

We begin with a short introduction to category theory to motivate projective limits.

Definition 1.1. A Category € consists of a class of objects Ob(%) along with a class of morphisms
Arr(%) such that for any A, B € Ob(%), there exists a subclass Homg (A, B) of morphisms from A
to B with a composition law,

Homg¢ (A, B) x Homg (B, C') — Home (A, C)

that sends (f,g) + go f. For all A € Ob(%), there exists an identity morphism, id4 € Hom¢ (A, A).
Finally, composition of maps must be associative, i.e., ho (go f) = (hog)o f.

When f € Homg (A, B), we write that f: A — B in € and if

ALB%C

then go f : A — C for A,B,C € Ob(%). Formally, Hom¢ (A, B) is a monoid since there exists
an identity element and the operation is associative. There are instances in which either Ob(%) or
Home (A, B) forms a set rather than a class. In this case, we call € a small category. An element
f € Homg (A, B) is an isomorphism if there exists a ¢ € Homg (B, A) such that go f = id4 and
fog=1idpg. First we present several classical categories.

(a) Denote by Set the category of sets where Ob(Set) is the class of all sets and for any X,Y €
Ob(Set), Homget (X, Y) is the class of all functions between X and Y. Isomorphisms in the
category of sets are bijections.

(b) Denote by Grp the category of groups where Ob(Grp) is the class of all groups and Home,p (G, H)
is the class of all group homomorphisms from G to H. In other words, ¢ € Homg,p(G, H) <=

oz xy) = p(z) o p(y) for all z,y € G.

(¢) Denote by Met the category of metric spaces. Then for any (X,d;), (Y,d2) € Ob(Met), we
have that Hompget (X, d1), (Y, d2)) is the class of all metric functions between the spaces (i.e.
Lipschitz function of metric spaces with constant K = 1.)

(d) Denote by Top the category of topological spaces. Arr(Top) is therefore the class of all continu-
ous maps between topological spaces in Ob(Top). In this case, homeomorphisms (i.e. bijective,
continuous maps with a continuous inverse) are the isomorphisms of the category.

Definition 1.2. A Subcategory 9 of a category € consists of a subclass of Ob(%) along with a
subclass of Arr(%) such that the morphisms in & agree with the morphisms in .

A few examples of subcategories include: (i) the category of Abelian groups, Ab, is a subcategory
of Grp, (ii) the category of all Hausdorff topological spaces, Haus, is a subcategory of Top.

Definition 1.3. If A € Ob(¥) for a category ¢, we say that A is universally repelling if for every
B € Ob(%), there is a unique morphism from A to B. Equivalently,



A is universally repelling <= |Hom (A4, B)| =1

We say that A is universally attracting if for every B € Ob(%), there is a unique morphism from B
to A. Equivalently,

A is universally attracting <= |Home (B, A)| =1
Proposition 1.1. In the category Set, the empty set () is universally repelling.

Proof. We have that @ is universally repelling if for every B € Ob(Set), there is a unique morphism
from ) — B. But f : ) — B is the empty function. The fact that the empty function is unique is
vacuously true. Thus, @) is universally repelling in Set. O

Proposition 1.2. The trivial group {e} is both universally attracting and universally repelling in
the category of groups.

Proof. We must show that |Homg,p({e}, H)| = |Homa,p(G, {e})| = 1. Note that the only function
¢ : G — {e} is the 0-map (or, more generally, the e-map) which sends each element g to the identity
of the group. Also, ¢ : {e} — H is simply the canonical inclusion map (which is always unique).
Thus, {e} is both universally attracting and universally repelling in the category of groups. O

Most functions encountered in algebra send objects to others within the same category. Consider,
for example, the determinant function det : GL,,(F) — F. The domain is the group of n x n invertible
matrices over a field F and the codomain is a field. But, trivially, since all fields can be seen as groups
(with far more structure), the morphism still exists in the category of groups. However, we are often
interested in functions that take us from one category to a distinct category. To accomplish this, we
use Functors.

Definition 1.4. A functor is a map between categories that preserves structure. Formally, if ¥ and
9 are categories and F : € — 2, then F assign to each object A € € an object F(A) € 2 and each
arrow f: A — B in € to another arrow, Ff : F(A) — F(B) such that

(a) F(ida) = idp(a)
(b) F(gof)=F(g)oF(f)

In this case, F' is called a covariant functor. If condition (a) is met but we instead have F(go f) =
F(f)o F(g), then F is called contravariant.

A subcategory & of € is endowed with a canonical inclusion functor that takes all elements to
their identity in the larger category. Within a category, we have similar definitions for injectivity,
surjectivity, and bijectivity.

Definition 1.5. A functor F : ¥ — Z is called faithful if it is injective on morphisms.
Definition 1.6. A functor F : € — Z is called full if it is surjective on morphisms.
Definition 1.7. A functor F : € — Z is called fully faithful if it is bijective on morphisms.
Definition 1.8. An endofunctor is a functor from a category € to itself.

We now consider several important examples of functors.

(a) Consider the covariant functor F' : Grp — Set that faithfully takes every group G to its
underlying set U(G). Functors of this type are called forgetful; broadly, they are maps that lose
some structure/axioms.

(b) Let F : Set — Grp be the functor that sends each set to the free group generated by that set.



(¢) Denote by Vectx the category of vector spaces over the field K. A linear functional on a vector
space V is a linear map V' — F. We denote by Z(V,F) = V* the set of all linear functionals,
i.e., the dual of V. Consider the endofunctor F' : Vectg — Vecty that sends a vector space
V' € Ob(Vectk) to its dual space V*. What does this functor do to the morphisms? Given a
linear transformation f : V — W, can we get a map F'f : V* — W*? So, F'f sends a linear
functional ¢ : V' — K to another linear functional ¢o : W — K. But this map can only be
made with a pullback (composition). Indeed, we have the following commutative diagram:

Thus, we define F(f) := f* where f*(p) = ¢ o f. Then,
w2 : (W —=K)— oo f:(V—K)

which shows that the arrows are reversed; therefore, F' is contravariant.

Definition 1.9. A pair of functors F': A — B and G : B — A is called adjoint if for every pair of
objects (a,b) with a € A and b € B, there is a functorial bijection,

7 : Homp(F(a),b) = Homy(a, G(b))

Equivalently, there is a bijection such that for all f : a — @’ in A and g : b — V' in B, the following
diagram commutes:

Homp(F(a'),b) —— Homp(F'(a),b) —— Homp(F(a),b’)

l | l

Homy(a', G(b)) —— Homy(a, G(b)) —— Homa(a, G(b))

Proposition 1.3. Let F': Set — Grp be the functor that sends each set to the free group generated
by the set and let G : Grp — Set be the forgetful functor that sends G to its underlying set U(G)
(see the above examples). Then F is left adjoint to G and G is right adjoint to F.

Proof. This is beyond the scope of this paper. O

2. Direct and Inverse Systems

In constructing direct and inverse limits for the creation of profinite groups, we must first consider di-
rect and inverse systems within a category. Then we may examine the universally repelling/attracting
objects of these systems that provides the desired limit. First, we require two simple definitions.

Definition 2.1. A partially ordered set (or poset) is a set along with a relation < C A x A such that
for every z,y, z € A, the following are satisfied:

(a) Reflexivity: v <z
(b) Antisymmetry: (zx S yAy<z) = =1y

(¢) Transitivity: (z <yAy<z) = =<z



It is important to note that the trichotemy = < y, y < x, or £ = y does not necessarily hold for all
x,y € A in a partial order. Consider, for example, the poset (N,|) where | is the divisibility relation.
It is easy to see that the axioms are satisfied, but note that 213, 312, and 2 # 3. If, on the other
hand, one of the relations does hold for all z,y € A, then the set is totally ordered; one standard
example of this is (Z, <).

Definition 2.2. A directed set is a partially ordered set (A, <) such that for all z,y € A, there exists
a z € A such that z < z and y < z. Equivalently, a set is directed if there exist pairwise upper bounds
for all elements of the set.

Proposition 2.1. Every totally ordered set is directed.
Proof. TODO (result from lattice theory) O
We briefly discuss an important example of a directed set that will be discussed in detail later.

Proposition 2.2. Let (X,7) be a topological space. Suppose zyp € T and let U,, and V., be
neighborhoods around zy (not necessarily open). We can turn all of the neighbourhoods of zj into
a directed set by defining U <X V <= V C U. Intuitively, for any two neighborhoods of xy (one
contained in the other), the pairwise upper bound will be a smaller neighborhood.

Proof. We must first show that ((X,7), <) is a partial order. Suppose U,V , and W, are neighbour-
hoods around ¢y € X. By definition of C, it always holds that U C U, so < is reflexive. If U C V
and V C U, then U = V, so antisymmetry holds. Finally, if U C V and V C W, then U C W, so
transitivity of < holds. Now we must show that for any U,V such that V' C U, there exists a W such
that U C W and V C W. But this is trivial since we may always choose {zg}. Thus, (X, 7) under
the < relation is a directed set. ]

We are now able to define direct systems.

Definition 2.3. Suppose I is a directed set under < and % is a category. Let {4;}ics be a collection
of objects in Ob(%) indexed by I and let ¢;<; : A; — A; be a homomorphism for all ¢ < j such that,

(a) pi<i =ida, : Aj — A
(b) @j<k 0 @i<j = pi<k when i < j < k.

Then, (A;, @;<;) is called a direct system in €. Note that “homomorphism” is meant in the context
of the category in which the system exists; in the category of rings, for example, ¢;<; is understood
to be a ring homomorphism.



